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0.1 Warm up

Let’s consider observables xa sampled from a set configurations, Xa. The number of samples

Na = #Xa, (1)

Na∩b = #(Xa ∩Xb). (2)

The full ensemble X ⊃ Xa for any subensemble a.

Mean value of the covariance matrix:

σ̄2
ab =

1

Na∩b − 1

∑
i∈Xa∩Xb

(x̄a − xia)(x̄b − xib)
Na∩b→∞−−−−−−→ σ2

ab. (3)

Consider f(x⃗), a function of x⃗, and a näıve approach,

f̄ = f(⃗̄x), (4)

with its squared error

(δf)2 =
∑
a,b

Na∩b
NaNb

fafbσ
2
ab, (5)

where

fa = ∂af |x⃗=⟨x⃗⟩. (6)

Since we do not know the true values of σab or fa, we replace them as their mean values σ̄ab and

f̄a = ∂af |x⃗=⃗̄x and give an error estimate

(δf)2 =
∑
a,b

Na∩b
NaNb

f̄af̄bσ̄
2
ab. (7)
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0.2 Jackknife

For i ∈ X, define

x̄ia =

{
Nax̄a−xi

a
Na−1 if i ∈ Xa

x̄a else
. (8)

Evaluate a kind of deviation a follows:

∑
i∈X

(f̄ − f(x⃗i))2 =
∑
i∈X

(∑
a

f̄a(x̄a − x̄ia)

)2

=
∑
a,b

f̄af̄b
∑
i∈X

(x̄a − x̄ia)(x̄b − x̄ib)

=
∑
a,b

1

(Na − 1)(Nb − 1)
f̄af̄b

∑
i∈Xa∩Xb

(x̄a − xia)(x̄b − xib)

=
∑
a,b

Na∩b − 1

(Na − 1)(Nb − 1)
f̄af̄bσ̄

2
ab. (9)

This error estimate is slightly different from the näıve one given in Eq. (7). If we substitute the

jackknife samples as

x̄ia → x̄a +

√
Na − 1

Na
(x̄ia − x̄a), (10)

the diagonal (a = b) contributions to the error becomes the same as those in Eq. (7). But that is not

necessarily the case for the off-diagonal (a ̸= b) part. The difference from Eq. (7) in the off-diagonal

part is only up to a factor which disappears in the limit Na∩b → ∞ (and hence Na, Nb → ∞). Thus,

this kind of discussion is not important and it may be more valuable to spend our time for other

works. If anyone is nevertheless eager to know how to achieve the same error estimation as in Eq. (7)

with the jackknife method, the answer is given as follows.

Instead of the definition of jackknife samples given in Eq. (8), let’s view the definition as a linear

map centering the mean value,

x̄ia = x̄a +
∑
a′

Laa′(x̄a′ − xia′), (11)

where we define xia = x̄a for i ̸∈ Xa. For the standard jackknife, Laa′ = δaa′/(Na − 1). With this

definition, the jackknife average stays the mean value x̄a, and Eq. (9) becomes∑
i∈X

(f̄ − f(x⃗i))2 =
∑

a,b,a′,b′

f̄af̄bLaa′Lbb′(Na′∩b′ − 1)σ̄2
a′b′ . (12)

In order for this to be the same as Eq. (7), it is enough to require

LKLT = H, (13)
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where

Kab = (Na∩b − 1)σ̄2
ab, (14)

Hab =
Na∩b
NaNb

σ̄2
ab. (15)

If K and H are real symmetric positive matrix, there are many solutions to Eq. (13). However, I do

not see any solution independent of σ̄2
ab. Since Eq. (13) is real symmetric, there are D(D+1)

2 constraints

on L, where D stands for the size of matrices under consideration. Therefore, the solution has D(D−1)
2

degrees of freedom, which may not be enough to eliminate D(D+1)
2 independent values of σ̄2

ab. This

means L is expected to be dependent on at least D values from σ̄2
ab. Unfortunately, σ̄2

ab-dependence

on L is not convenient as it means we need to perform this rescaling each time we introduce new

observables sampled from a new subensemble.

My preference is the simple rescaling in Eq. (10) allowing tiny difference in the off-diagonal (a ̸= b)

contribution to the error. If we really need to take into account that difference, I would prefer

Matsumoto’s method than what we discussed here.

0.3 varying bin size
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