# Qlattice (https://github.com/jinluchang/qlattice)
#
# Copyright (C) 2021
#
# Author: Luchang Jin (ljin.luchang@gmail.com)
# Author: Masaaki Tomii
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
"""
Operators for pi and K follows Eq.(103,122) of the following reference
@article{Christ:2019sah,
author = "Christ, Norman H. and Kelly, Christopher and Zhang, Daiqian",
title = "{Lattice simulations with G-parity Boundary Conditions}",
eprint = "1908.08640",
archivePrefix = "arXiv",
primaryClass = "hep-lat",
doi = "10.1103/PhysRevD.101.014506",
journal = "Phys. Rev. D",
volume = "101",
number = "1",
pages = "014506",
year = "2020"
}
"""
try:
from .wick import *
from .compile import *
except:
from wick import *
from compile import *
import sympy
spin_index_counter = 0
color_index_counter = 0
def new_spin_index():
global spin_index_counter
spin_index_counter += 1
return f"a_s_{spin_index_counter}"
def new_color_index():
global color_index_counter
color_index_counter += 1
return f"a_c_{color_index_counter}"
saved_sc_indices = []
# saved_sc_indices = None
def save_sc_indices():
if saved_sc_indices is None:
return
saved_sc_indices.append([spin_index_counter, color_index_counter])
def restore_sc_indices():
if saved_sc_indices is None:
return
global spin_index_counter
global color_index_counter
spin_index_counter, color_index_counter = saved_sc_indices.pop()
def rsc_call(x, *args):
restore_sc_indices()
return x(*args)
def jump_sc_indices(step=100):
if saved_sc_indices is None:
return
global spin_index_counter
global color_index_counter
spin_index_counter += 100
color_index_counter += 100
###################
def show_dagger(is_dagger):
if not is_dagger:
return ""
else:
return "^dag"
def show_parity(parity):
if parity is None:
return ""
elif parity == "even":
return ",e"
elif parity == "odd":
return ",o"
else:
return parity
###################
[docs]
def mk_scalar(f1:str, f2:str, p:str, is_dagger=False):
"""
q1bar q2
"""
s = new_spin_index()
c = new_color_index()
if not is_dagger:
return Qb(f1, p, s, c) * Qv(f2, p, s, c) + f"({f1}bar {f2})({p})"
else:
return Qb(f2, p, s, c) * Qv(f1, p, s, c) + f"({f2}bar {f1})({p})"
[docs]
def mk_scalar5(f1:str, f2:str, p:str, is_dagger=False):
"""
q1bar g5 q2
"""
s1 = new_spin_index()
s2 = new_spin_index()
c = new_color_index()
if not is_dagger:
return Qb(f1, p, s1, c) * G(5, s1, s2) * Qv(f2, p, s2, c) + f"({f1}bar g5 {f2})({p})"
else:
return -Qb(f2, p, s1, c) * G(5, s1, s2) * Qv(f1, p, s2, c) + f"(-{f2}bar g5 {f1})({p})"
[docs]
def mk_vec_mu(f1:str, f2:str, p:str, mu, is_dagger=False):
"""
q1bar gmu q2
"""
s1 = new_spin_index()
s2 = new_spin_index()
c = new_color_index()
if not is_dagger:
return Qb(f1, p, s1, c) * G(mu, s1, s2) * Qv(f2, p, s2, c) + f"({f1}bar g{mu} {f2})({p})"
else:
if mu in [ 0, 1, 2, 5 ]:
return -Qb(f2, p, s1, c) * G(mu, s1, s2) * Qv(f1, p, s2, c) + f"(-{f2}bar g{mu} {f1})({p})"
else:
assert mu in [ 3, ]
return Qb(f2, p, s1, c) * G(mu, s1, s2) * Qv(f1, p, s2, c) + f"({f2}bar g{mu} {f1})({p})"
[docs]
def mk_vec5_mu(f1:str, f2:str, p:str, mu, is_dagger=False):
"""
q1bar gmu g5 q2
"""
s1 = new_spin_index()
s2 = new_spin_index()
s3 = new_spin_index()
c = new_color_index()
if not is_dagger:
return Qb(f1, p, s1, c) * G(mu, s1, s2) * G(5, s2, s3) * Qv(f2, p, s3, c) + f"({f1}bar g{mu} g5 {f2})({p})"
else:
if mu in [ 0, 1, 2, ]:
return -Qb(f2, p, s1, c) * G(mu, s1, s2) * G(5, s2, s3) * Qv(f1, p, s3, c) + f"(-{f2}bar g{mu} {f1})({p})"
else:
assert mu in [ 3, 5, ]
return Qb(f2, p, s1, c) * G(mu, s1, s2) * G(5, s2, s3) * Qv(f1, p, s3, c) + f"({f2}bar g{mu} {f1})({p})"
[docs]
def mk_meson(f1:str, f2:str, p:str, is_dagger=False):
"""
i q1bar g5 q2 #dag: i q2bar g5 q1
"""
if not is_dagger:
return sympy.I * mk_scalar5(f1, f2, p, is_dagger) + f"(i {f1}bar g5 {f2})({p})"
else:
return -sympy.I * mk_scalar5(f1, f2, p, is_dagger) + f"(i {f2}bar g5 {f1})({p})"
###################
[docs]
def mk_pi_0(p:str, is_dagger=False):
"""
i/sqrt(2) * (ubar g5 u - dbar g5 d) #dag: same
"""
return 1 / sympy.sqrt(2) * (mk_meson("u", "u", p, is_dagger) - mk_meson("d", "d", p, is_dagger)) + f"pi0({p}){show_dagger(is_dagger)}"
[docs]
def mk_pi_p(p:str, is_dagger=False):
"""
i ubar g5 d #dag: i dbar g5 u
"""
return mk_meson("u", "d", p, is_dagger) + f"pi+({p}){show_dagger(is_dagger)}"
[docs]
def mk_pi_m(p:str, is_dagger=False):
"""
-i dbar g5 u #dag: -i ubar g5 d
"""
return -mk_meson("d", "u", p, is_dagger) + f"pi-({p}){show_dagger(is_dagger)}"
[docs]
def mk_a0_0(p:str, is_dagger=False):
"""
1/sqrt(2) * (ubar u - dbar d)
"""
return 1 / sympy.sqrt(2) * (mk_scalar("u", "u", p, is_dagger) - mk_scalar("d", "d", p, is_dagger)) + f"a0_0({p}){show_dagger(is_dagger)}"
[docs]
def mk_a0_p(p:str, is_dagger=False):
"""
ubar d
"""
return mk_scalar("u", "d", p, is_dagger) + f"a0_+({p}){show_dagger(is_dagger)}"
[docs]
def mk_a0_m(p:str, is_dagger=False):
"""
dbar u
"""
return mk_scalar("d", "u", p, is_dagger) + f"a0_-({p}){show_dagger(is_dagger)}"
[docs]
def mk_k_p(p:str, is_dagger=False):
"""
i ubar g5 s #dag: i sbar g5 u
"""
return mk_meson("u", "s", p, is_dagger) + f"K+({p}){show_dagger(is_dagger)}"
[docs]
def mk_k_m(p:str, is_dagger=False):
"""
-i sbar g5 u #dag: -i ubar g5 s
"""
return -mk_meson("s", "u", p, is_dagger) + f"K-({p}){show_dagger(is_dagger)}"
[docs]
def mk_k_0(p:str, is_dagger=False):
"""
i dbar g5 s #dag: i sbar g5 d
"""
return mk_meson("d", "s", p, is_dagger) + f"K0({p}){show_dagger(is_dagger)}"
[docs]
def mk_k_0_bar(p:str, is_dagger=False):
"""
-i sbar g5 d #dag: -i dbar g5 s
"""
return -mk_meson("s", "d", p, is_dagger) + f"K0b({p}){show_dagger(is_dagger)}"
[docs]
def mk_sigma(p:str, is_dagger=False):
"""
1/sqrt(2) * (ubar u + dbar d)
"""
s = new_spin_index()
c = new_color_index()
return 1 / sympy.sqrt(2) * (Qb("u", p, s, c) * Qv("u", p, s, c) + Qb("d", p, s, c) * Qv("d", p, s, c)) + f"sigma({p})"
[docs]
def mk_kappa_p(p:str, is_dagger=False):
"""
ubar s
"""
return mk_scalar("u", "s", p, is_dagger) + f"kappa+({p}){show_dagger(is_dagger)}"
[docs]
def mk_kappa_m(p:str, is_dagger=False):
"""
sbar u
"""
return mk_scalar("s", "u", p, is_dagger) + f"kappa-({p}){show_dagger(is_dagger)}"
[docs]
def mk_kappa_0(p:str, is_dagger=False):
"""
dbar s
"""
return mk_scalar("d", "s", p, is_dagger) + f"kappa0({p}){show_dagger(is_dagger)}"
[docs]
def mk_kappa_0_bar(p:str, is_dagger=False):
"""
sbar u
"""
return mk_scalar("s", "u", p, is_dagger) + f"kappa0bar({p}){show_dagger(is_dagger)}"
[docs]
def mk_k_0_star_mu(p:str, mu, is_dagger=False):
"""
dbar gmu s
"""
return mk_vec_mu("d", "s", p, mu, is_dagger)
[docs]
def mk_k_0_star_bar_mu(p:str, mu, is_dagger=False):
"""
sbar gmu d
"""
return mk_vec_mu("s", "d", p, mu, is_dagger)
###################
[docs]
def mk_pipi_i22(p1:str, p2:str, is_dagger=False):
return mk_pi_p(p1, is_dagger) * mk_pi_p(p2, is_dagger) + f"pipi_I22({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_pipi_i21(p1:str, p2:str, is_dagger=False):
return 1 / sympy.sqrt(2) * (
mk_pi_p(p1, is_dagger) * mk_pi_0(p2, is_dagger)
+ mk_pi_0(p1, is_dagger) * mk_pi_p(p2, is_dagger)
) + f"pipi_I21({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_pipi_i11(p1:str, p2:str, is_dagger=False):
return 1 / sympy.sqrt(2) * (
mk_pi_p(p1, is_dagger) * mk_pi_0(p2, is_dagger)
- mk_pi_0(p1, is_dagger) * mk_pi_p(p2, is_dagger)
) + f"pipi_I11({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_pipi_i20(p1:str, p2:str, is_dagger=False):
return 1 / sympy.sqrt(6) * (
2 * mk_pi_0(p1, is_dagger) * mk_pi_0(p2, is_dagger)
+ mk_pi_m(p1, is_dagger) * mk_pi_p(p2, is_dagger)
+ mk_pi_p(p1, is_dagger) * mk_pi_m(p2, is_dagger)
) + f"pipi_I20({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_pipi_i10(p1:str, p2:str, is_dagger=False):
return 1 / sympy.sqrt(2) * (
mk_pi_p(p1, is_dagger) * mk_pi_m(p2, is_dagger)
- mk_pi_m(p1, is_dagger) * mk_pi_p(p2, is_dagger)
) + f"pipi_I10({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_pipi_i0(p1:str, p2:str, is_dagger=False):
return 1 / sympy.sqrt(3) * (
- mk_pi_0(p1, is_dagger) * mk_pi_0(p2, is_dagger)
+ mk_pi_m(p1, is_dagger) * mk_pi_p(p2, is_dagger)
+ mk_pi_p(p1, is_dagger) * mk_pi_m(p2, is_dagger)
) + f"pipi_I0({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kk_i11(p1:str, p2:str, is_dagger=False, *, is_sym=False):
if is_sym:
return 1 / sympy.sqrt(2) * (mk_kk_i11(p1, p2, is_dagger) + mk_kk_i11(p2, p1, is_dagger)) + f"KK_I11({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return mk_k_p(p1, is_dagger) * mk_k_0_bar(p2, is_dagger) + f"KK_I11({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kk_i10(p1:str, p2:str, is_dagger=False, *, is_sym=False):
if is_sym:
return 1 / sympy.sqrt(2) * (mk_kk_i10(p1, p2, is_dagger) + mk_kk_i10(p2, p1, is_dagger)) + f"KK_I10({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return 1 / sympy.sqrt(2) * (
- mk_k_0(p1, is_dagger) * mk_k_0_bar(p2, is_dagger)
+ mk_k_p(p1, is_dagger) * mk_k_m(p2, is_dagger)
) + f"KK_I10({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kk_i0(p1:str, p2:str, is_dagger=False, *, is_sym=False):
if is_sym:
return 1 / sympy.sqrt(2) * (mk_kk_i0(p1, p2, is_dagger) + mk_kk_i0(p2, p1, is_dagger)) + f"KK_I0({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return 1 / sympy.sqrt(2) * (
mk_k_0(p1, is_dagger) * mk_k_0_bar(p2, is_dagger)
+ mk_k_p(p1, is_dagger) * mk_k_m(p2, is_dagger)
) + f"KK_I0({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_k0k0bar(p1:str, p2:str, is_dagger=False, *, is_sym=False):
if is_sym:
return 1 / sympy.sqrt(2) * (mk_k0k0bar(p1, p2, is_dagger) + mk_k0k0bar(p2, p1, is_dagger)) + f"K0K0b({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return mk_k_0(p1, is_dagger) * mk_k_0_bar(p2, is_dagger) + f"K0K0b({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_k0pi0(p1:str, p2:str, is_dagger=False, *, is_sym=False):
if is_sym:
return 1 / sympy.sqrt(2) * (mk_k0pi0(p1, p2, is_dagger) + mk_k0pi0(p2, p1, is_dagger)) + f"K0pi0({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return mk_k_0(p1, is_dagger) * mk_pi_0(p2, is_dagger) + f"K0pi0({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_k0barpi0(p1:str, p2:str, is_dagger=False, *, is_sym=False):
if is_sym:
return 1 / sympy.sqrt(2) * (mk_k0barpi0(p1, p2, is_dagger) + mk_k0barpi0(p2, p1, is_dagger)) + f"K0barpi0({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return mk_k_0_bar(p1, is_dagger) * mk_pi_0(p2, is_dagger) + f"K0barpi0({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kppim(p1:str, p2:str, is_dagger=False, *, is_sym=False):
if is_sym:
return 1 / sympy.sqrt(2) * (mk_kppim(p1, p2, is_dagger) + mk_kppim(p2, p1, is_dagger)) + f"K+pi-({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return mk_k_p(p1, is_dagger) * mk_pi_m(p2, is_dagger) + f"K+pi-({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kmpip(p1:str, p2:str, is_dagger=False, *, is_sym=False):
if is_sym:
return 1 / sympy.sqrt(2) * (mk_kmpip(p1, p2, is_dagger) + mk_kmpip(p2, p1, is_dagger)) + f"K-pi+({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return mk_k_m(p1, is_dagger) * mk_pi_p(p2, is_dagger) + f"K-pi+({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kpi_0_i1half(p1:str, p2:str, is_dagger=False, *, is_sym=False):# strangeness = -1
if is_sym:
return 1 / sympy.sqrt(2) * (mk_kpi_0_i1half(p1, p2, is_dagger) + mk_kpi_0_i1half(p2, p1, is_dagger)) + f"Kpi_0_I1half({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return simplified( sympy.simplify(1)/sympy.sqrt(3)* mk_k_0(p1, is_dagger) * mk_pi_0(p2, is_dagger)
+ sympy.sqrt(2)/sympy.sqrt(3)* mk_k_p(p1, is_dagger) * mk_pi_m(p2, is_dagger) ) + f"Kpi_0_I1half({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kpi_p_i1half(p1:str, p2: str, is_dagger=False, *, is_sym=False):# strangeness = -1
if is_sym:
return 1 / sympy.sqrt(2) * (mk_kpi_m_i1half(p1, p2, is_dagger) + mk_kpi_m_i1half(p2, p1, is_dagger)) + f"Kpi_+_I1half({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return simplified( sympy.sqrt(2)/sympy.sqrt(3)* mk_k_0(p1, is_dagger) * mk_pi_p(p2, is_dagger)
+ sympy.simplify(1)/sympy.sqrt(3)* mk_k_p(p1, is_dagger) * mk_pi_0(p2, is_dagger) ) + f"Kpi_+_I1half({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kpi_m_i3halves(p1:str, p2:str, is_dagger=False, *, is_sym=False):# strangeness = -1
if is_sym:
return 1 / sympy.sqrt(2) * ( mk_kpi_m_i3halves(p1, p2, is_dagger) + mk_kpi_m_i3halves(p2, p1, is_dagger) ) + f"Kpi_-_I3halves({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return mk_k_0(p1, is_dagger) * mk_pi_m(p2, is_dagger) + f"Kpi_-_I3halves({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kpi_0_i3halves(p1:str, p2: str, is_dagger=False, *, is_sym=False):# strangeness = -1
if is_sym:
return 1 / sympy.sqrt(2) * (mk_kpi_0_i3halves(p1, p2, is_dagger) + mk_kpi_0_i3halves(p2, p1, is_dagger)) + f"Kpi_0_I3halves({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return simplified( - sympy.sqrt(2)/sympy.sqrt(3)* mk_k_0(p1, is_dagger) * mk_pi_0(p2, is_dagger)
+ sympy.simplify(1)/sympy.sqrt(3)* mk_k_p(p1, is_dagger) * mk_pi_m(p2, is_dagger) ) + f"Kpi_0_I3halves({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kpi_p1_i3halves(p1:str, p2: str, is_dagger=False, *, is_sym=False):# strangeness = -1
if is_sym:
return 1 / sympy.sqrt(2) * (mk_kpi_p1_i3halves(p1, p2, is_dagger) + mk_kpi_p1_i3halves(p2, p1, is_dagger)) + f"Kpi_+_I3halves({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return simplified( - sympy.simplify(1)/sympy.sqrt(3)* mk_k_0(p1, is_dagger) * mk_pi_p(p2, is_dagger)
+ sympy.sqrt(2)/sympy.sqrt(3)* mk_k_p(p1, is_dagger) * mk_pi_0(p2, is_dagger) ) + f"Kpi_+_I3halves({p1},{p2}){show_dagger(is_dagger)}"
[docs]
def mk_kpi_p2_i3halves(p1:str, p2: str, is_dagger=False, *, is_sym=False):# strangeness = -1
if is_sym:
return 1 / sympy.sqrt(2) * (mk_kpi_p2_i3halves(p1, p2, is_dagger) + mk_kpi_p2_i3halves(p2, p1, is_dagger)) + f"Kpi_++_I3halves({p1},{p2},sym){show_dagger(is_dagger)}"
else:
return mk_k_p(p1, is_dagger) * mk_pi_p(p2, is_dagger) + f"Kpi_++_I3halves({p1},{p2}){show_dagger(is_dagger)}"
###################
[docs]
def mk_m(f:str, p:str, is_dagger=False):
return mk_scalar(f, f, p, is_dagger) + f"{f}bar{f}({p}){show_dagger(is_dagger)}"
[docs]
def mk_j5pi_mu(p:str, mu, is_dagger=False):
return mk_vec5_mu("d", "u", p, mu, is_dagger) + f"j5pi_mu({p},{mu}){show_dagger(is_dagger)}"
[docs]
def mk_j5k_mu(p:str, mu, is_dagger=False):
return mk_vec5_mu("s", "u", p, mu, is_dagger) + f"j5k_mu({p},{mu}){show_dagger(is_dagger)}"
[docs]
def mk_j5km_mu(p:str, mu, is_dagger=False):
return -mk_vec5_mu("u", "s", p, mu, is_dagger) + f"j5km_mu({p},{mu}){show_dagger(is_dagger)}"
[docs]
def mk_jpi_mu(p:str, mu, is_dagger=False):
return mk_vec_mu("d", "u", p, mu, is_dagger) + f"jpi_mu({p},{mu}){show_dagger(is_dagger)}"
[docs]
def mk_jk_mu(p:str, mu, is_dagger=False):
return mk_vec_mu("s", "u", p, mu, is_dagger) + f"jk_mu({p},{mu}){show_dagger(is_dagger)}"
[docs]
def mk_j_mu(p:str, mu, is_dagger=False):
return sympy.simplify(1)*2/3 * mk_vec_mu("u", "u", p, mu, is_dagger) \
- sympy.simplify(1)*1/3 * mk_vec_mu("d", "d", p, mu, is_dagger) \
- sympy.simplify(1)*1/3 * mk_vec_mu("s", "s", p, mu, is_dagger) \
+ f"j_mu({p},{mu}){show_dagger(is_dagger)}"
def mk_j_prime_mu(p:str, mu, is_dagger=False):
return sympy.simplify(1)*2/3 * mk_vec_mu("u'", "u'", p, mu, is_dagger) \
- sympy.simplify(1)*1/3 * mk_vec_mu("d'", "d'", p, mu, is_dagger) \
- sympy.simplify(1)*1/3 * mk_vec_mu("s'", "s'", p, mu, is_dagger) \
+ f"j'_mu({p},{mu}){show_dagger(is_dagger)}"
def mk_j_prime2_mu(p:str, mu, is_dagger=False):
return sympy.simplify(1)*2/3 * mk_vec_mu("u''", "u''", p, mu, is_dagger) \
- sympy.simplify(1)*1/3 * mk_vec_mu("d''", "d''", p, mu, is_dagger) \
- sympy.simplify(1)*1/3 * mk_vec_mu("s''", "s''", p, mu, is_dagger) \
+ f"j''_mu({p},{mu}){show_dagger(is_dagger)}"
[docs]
def mk_jl_mu(p:str, mu, is_dagger=False):
"""
jl = sqrt(2)/6 * (j0 + 3 * j10) if no s quark
"""
return sympy.simplify(1)*2/3 * mk_vec_mu("u", "u", p, mu, is_dagger) - sympy.simplify(1)*1/3 * mk_vec_mu("d", "d", p, mu, is_dagger) + f"jl_mu({p},{mu}){show_dagger(is_dagger)}"
[docs]
def mk_j0_mu(p:str, mu, is_dagger=False):
"""
I=0 Gparity -
"""
return sympy.simplify(1)*1/sympy.sqrt(2) * (mk_vec_mu("u", "u", p, mu, is_dagger) + mk_vec_mu("d", "d", p, mu, is_dagger)) + f"j0_mu({p},{mu}){show_dagger(is_dagger)}"
[docs]
def mk_j10_mu(p:str, mu, is_dagger=False):
"""
I=1 Gparity +
"""
return sympy.simplify(1)*1/sympy.sqrt(2) * (mk_vec_mu("u", "u", p, mu, is_dagger) - mk_vec_mu("d", "d", p, mu, is_dagger)) + f"j10_mu({p},{mu}){show_dagger(is_dagger)}"
[docs]
def mk_j11_mu(p:str, mu, is_dagger=False):
"""
I=1 Gparity +
"""
return mk_vec_mu("u", "d", p, mu, is_dagger) + f"j11_mu({p},{mu}){show_dagger(is_dagger)}"
[docs]
def mk_j1n1_mu(p:str, mu, is_dagger=False):
"""
I=1 Gparity +
"""
return -mk_vec_mu("d", "u", p, mu, is_dagger) + f"j1n1_mu({p},{mu}){show_dagger(is_dagger)}"
###################
def mk_jw_v_mu(p, mu):
return mk_jpi_mu(p, mu) + mk_jk_mu(p, mu)
def mk_jw_a_mu(p, mu):
return mk_j5pi_mu(p, mu) + mk_j5k_mu(p, mu)
def mk_sw5(p):
return mk_pi_p(p, is_dagger=True) + mk_k_p(p, is_dagger=True)
###################
[docs]
def mk_4qOp_VV(f1:str, f2:str, f3:str, f4:str, p, is_scalar=False, parity=None, is_dagger=False):
if parity == "odd":
return 0
if is_scalar:
return mk_4qOp_SS(f1,f2,f3,f4,p,is_dagger)
s = 0
for mu in range(4):
save_sc_indices()
for mu in range(4):
restore_sc_indices()
s = s + mk_vec_mu(f1,f2,p,mu,is_dagger) * mk_vec_mu(f3,f4,p,mu,is_dagger)
s.simplify()
jump_sc_indices()
return s
[docs]
def mk_4qOp_VA(f1:str, f2:str, f3:str, f4:str, p, is_scalar=False, parity=None, is_dagger=False):
if parity == "even":
return 0
if is_scalar:
return mk_4qOp_SP(f1,f2,f3,f4,p,is_dagger)
s = 0
for mu in range(4):
save_sc_indices()
for mu in range(4):
restore_sc_indices()
s = s + mk_vec_mu(f1,f2,p,mu,is_dagger) * mk_vec5_mu(f3,f4,p,mu,is_dagger)
s.simplify()
jump_sc_indices()
return s
[docs]
def mk_4qOp_AV(f1:str, f2:str, f3:str, f4:str, p, is_scalar=False, parity=None, is_dagger=False):
if parity == "even":
return 0
if is_scalar:
return mk_4qOp_PS(f1,f2,f3,f4,p,is_dagger)
s = 0
for mu in range(4):
save_sc_indices()
for mu in range(4):
restore_sc_indices()
s = s + mk_vec5_mu(f1,f2,p,mu,is_dagger) * mk_vec_mu(f3,f4,p,mu,is_dagger)
s.simplify()
jump_sc_indices()
return s
[docs]
def mk_4qOp_AA(f1:str, f2:str, f3:str, f4:str, p, is_scalar=False, parity=None, is_dagger=False):
if parity == "odd":
return 0
if is_scalar:
return mk_4qOp_PP(f1,f2,f3,f4,p,is_dagger)
s = 0
for mu in range(4):
save_sc_indices()
for mu in range(4):
restore_sc_indices()
s = s + mk_vec5_mu(f1,f2,p,mu,is_dagger) * mk_vec5_mu(f3,f4,p,mu,is_dagger)
s.simplify()
jump_sc_indices()
return s
[docs]
def mk_4qOp_SS(f1:str, f2:str, f3:str, f4:str, p, is_dagger=False):
return mk_scalar(f1,f2,p,is_dagger) * mk_scalar(f3,f4,p,is_dagger)
[docs]
def mk_4qOp_SP(f1:str, f2:str, f3:str, f4:str, p, is_dagger=False):
return mk_scalar(f1,f2,p,is_dagger) * mk_scalar5(f3,f4,p,is_dagger)
[docs]
def mk_4qOp_PS(f1:str, f2:str, f3:str, f4:str, p, is_dagger=False):
return mk_scalar5(f1,f2,p,is_dagger) * mk_scalar(f3,f4,p,is_dagger)
[docs]
def mk_4qOp_PP(f1:str, f2:str, f3:str, f4:str, p, is_dagger=False):
return mk_scalar5(f1,f2,p,is_dagger) * mk_scalar5(f3,f4,p,is_dagger)
[docs]
def mk_4qOp_LL(*args):
for mu in range(4):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_VV,*args)
- rsc_call(mk_4qOp_VA,*args)
- rsc_call(mk_4qOp_AV,*args)
+ rsc_call(mk_4qOp_AA,*args) )
jump_sc_indices()
return expr
[docs]
def mk_4qOp_LR(*args):
for mu in range(4):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_VV,*args)
+ rsc_call(mk_4qOp_VA,*args)
- rsc_call(mk_4qOp_AV,*args)
- rsc_call(mk_4qOp_AA,*args) )
jump_sc_indices()
return expr
[docs]
def mk_4qOp_RL(*args):
for mu in range(4):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_VV,*args)
- rsc_call(mk_4qOp_VA,*args)
+ rsc_call(mk_4qOp_AV,*args)
- rsc_call(mk_4qOp_AA,*args) )
jump_sc_indices()
return expr
[docs]
def mk_4qOp_RR(*args):
for mu in range(4):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_VV,*args)
+ rsc_call(mk_4qOp_VA,*args)
+ rsc_call(mk_4qOp_AV,*args)
+ rsc_call(mk_4qOp_AA,*args) )
jump_sc_indices()
return expr
[docs]
def mk_4qOp_LL_cmix(f1,f2,f3,f4,p,is_scalar=False, parity=None, is_dagger=False):
assert not is_scalar
return mk_4qOp_LL(f1,f4,f3,f2,p,is_scalar,parity,is_dagger)
[docs]
def mk_4qOp_LR_cmix(f1,f2,f3,f4,p,is_scalar=False, parity=None, is_dagger=False):
assert not is_scalar
return -2 * mk_4qOp_RL(f1,f4,f3,f2,p,True,parity,is_dagger)
[docs]
def mk_Qsub(p, parity=None, is_dagger=False):
if parity is None:
expr = mk_Qsub(p, "even", is_dagger) + mk_Qsub(p, "odd", is_dagger)
elif parity == "even":
expr = mk_scalar("s", "d", p, is_dagger)
elif parity == "odd":
expr = -mk_scalar5("s", "d", p, is_dagger)
return expr + f"Qsub({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q1(p, parity=None, is_dagger=False):
return mk_4qOp_LL("s","d","u","u",p,False,parity,is_dagger) + f"Q1({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q2(p, parity=None, is_dagger=False):
return mk_4qOp_LL_cmix("s","d","u","u",p,False,parity,is_dagger) + f"Q2({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q3(p, parity=None, is_dagger=False):
for mu in range(3):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_LL,"s","d","u","u",p,False,parity,is_dagger)
+ rsc_call(mk_4qOp_LL,"s","d","d","d",p,False,parity,is_dagger)
+ rsc_call(mk_4qOp_LL,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q3({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q4(p, parity=None, is_dagger=False):
for mu in range(3):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_LL_cmix,"s","d","u","u",p,False,parity,is_dagger)
+ rsc_call(mk_4qOp_LL_cmix,"s","d","d","d",p,False,parity,is_dagger)
+ rsc_call(mk_4qOp_LL_cmix,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q4({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q5(p, parity=None, is_dagger=False):
for mu in range(3):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_LR,"s","d","u","u",p,False,parity,is_dagger)
+ rsc_call(mk_4qOp_LR,"s","d","d","d",p,False,parity,is_dagger)
+ rsc_call(mk_4qOp_LR,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q5({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q6(p, parity=None, is_dagger=False):
for mu in range(3):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_LR_cmix,"s","d","u","u",p,False,parity,is_dagger)
+ rsc_call(mk_4qOp_LR_cmix,"s","d","d","d",p,False,parity,is_dagger)
+ rsc_call(mk_4qOp_LR_cmix,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q6({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q7(p, parity=None, is_dagger=False):
for mu in range(3):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_LR,"s","d","u","u",p,False,parity,is_dagger)
- sympy.simplify(1)/2* rsc_call(mk_4qOp_LR,"s","d","d","d",p,False,parity,is_dagger)
- sympy.simplify(1)/2* rsc_call(mk_4qOp_LR,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q7({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q8(p, parity=None, is_dagger=False):
for mu in range(3):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_LR_cmix,"s","d","u","u",p,False,parity,is_dagger)
- sympy.simplify(1)/2* rsc_call(mk_4qOp_LR_cmix,"s","d","d","d",p,False,parity,is_dagger)
- sympy.simplify(1)/2* rsc_call(mk_4qOp_LR_cmix,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q8({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q9(p, parity=None, is_dagger=False):
for mu in range(3):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_LL,"s","d","u","u",p,False,parity,is_dagger)
- sympy.simplify(1)/2* rsc_call(mk_4qOp_LL,"s","d","d","d",p,False,parity,is_dagger)
- sympy.simplify(1)/2* rsc_call(mk_4qOp_LL,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q9({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q10(p, parity=None, is_dagger=False):
for mu in range(3):
save_sc_indices()
expr = simplified( rsc_call(mk_4qOp_LL_cmix,"s","d","u","u",p,False,parity,is_dagger)
- sympy.simplify(1)/2* rsc_call(mk_4qOp_LL_cmix,"s","d","d","d",p,False,parity,is_dagger)
- sympy.simplify(1)/2* rsc_call(mk_4qOp_LL_cmix,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q10({p}{show_parity(parity)}{show_dagger(is_dagger)})"
###################
# 3-flavor operators in (8,1) representation
# mk_Q1_b81
# mk_Q2_b81
# mk_Q3_b81
# mk_Q4_b81
#
# subtraction operators
# mk_Q0_b81 ( = mk_Qsub )
#
# charm-contained operators in (8,1) representation
# mk_Q5_b81
# mk_Q6_b81
# mk_Q7_b81
# mk_Q8_b81
#
# Qa^{e/o} = Aa^{e/o} Q0^{e/o} + Mai Qi^{e/o} ( i = 1, ... ,4; a = 5, ... ,8 )
[docs]
def mk_Q0_b81(p, parity=None, is_dagger=False):
return mk_Qsub(p, parity, is_dagger)
[docs]
def mk_Q1_b81(p, parity=None, is_dagger=False):
for mu in range (4):
save_sc_indices()
expr = simplified( sympy.simplify(1)/sympy.sqrt(10)* rsc_call(mk_4qOp_LL,"s","d","u","u",p,False,parity,is_dagger)
+ sympy.simplify(1)/sympy.sqrt(10)* rsc_call(mk_4qOp_LL_cmix,"s","d","u","u",p,False,parity,is_dagger)
+ sympy.simplify(2)/sympy.sqrt(10)* rsc_call(mk_4qOp_LL,"s","d","d","d",p,False,parity,is_dagger)
+ sympy.simplify(2)/sympy.sqrt(10)* rsc_call(mk_4qOp_LL,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q1_b81({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q2_b81(p, parity=None, is_dagger=False):
for mu in range (2):
save_sc_indices()
expr = simplified( sympy.simplify(1)/sympy.sqrt(2)* rsc_call(mk_4qOp_LL,"s","d","u","u",p,False,parity,is_dagger)
- sympy.simplify(1)/sympy.sqrt(2)* rsc_call(mk_4qOp_LL_cmix,"s","d","u","u",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q2_b81({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q3_b81(p, parity=None, is_dagger=False):
for mu in range (4):
save_sc_indices()
expr = simplified( sympy.simplify(1)/sympy.sqrt(3)* rsc_call(mk_4qOp_LR,"s","d","u","u",p,False,parity,is_dagger)
+ sympy.simplify(1)/sympy.sqrt(3)* rsc_call(mk_4qOp_LR,"s","d","d","d",p,False,parity,is_dagger)
+ sympy.simplify(1)/sympy.sqrt(3)* rsc_call(mk_4qOp_LR,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q3_b81({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q4_b81(p, parity=None, is_dagger=False):
for mu in range (4):
save_sc_indices()
expr = simplified( sympy.simplify(1)/sympy.sqrt(3)* rsc_call(mk_4qOp_LR_cmix,"s","d","u","u",p,False,parity,is_dagger)
+ sympy.simplify(1)/sympy.sqrt(3)* rsc_call(mk_4qOp_LR_cmix,"s","d","d","d",p,False,parity,is_dagger)
+ sympy.simplify(1)/sympy.sqrt(3)* rsc_call(mk_4qOp_LR_cmix,"s","d","s","s",p,False,parity,is_dagger) )
jump_sc_indices()
return expr + f"Q4_b81({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q5_b81(p, parity=None, is_dagger=False):
return mk_4qOp_LL("s","d","c","c",p,False,parity,is_dagger) + f"Q5_b81({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q6_b81(p, parity=None, is_dagger=False):
return mk_4qOp_LL_cmix("s","d","c","c",p,False,parity,is_dagger) + f"Q6_b81({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q7_b81(p, parity=None, is_dagger=False):
return mk_4qOp_LR("s","d","c","c",p,False,parity,is_dagger) + f"Q7_b81({p}{show_parity(parity)}{show_dagger(is_dagger)})"
[docs]
def mk_Q8_b81(p, parity=None, is_dagger=False):
return mk_4qOp_LR_cmix("s","d","c","c",p,False,parity,is_dagger) + f"Q8_b81({p}{show_parity(parity)}{show_dagger(is_dagger)})"
###################
def mk_vec_uu_mu(f1, f2, p1, p2, mu, is_dagger=False):
"""
q1bar gmu Umu q2
"""
s1 = new_spin_index()
s2 = new_spin_index()
c1 = new_color_index()
c2 = new_color_index()
if not is_dagger:
return Qb(f1, p1, s1, c1) * G(mu, s1, s2) * U("gauge", p1, mu, c1, c2) * Qv(f2, p2, s2, c2) + f"{f1}bar({p1}) g{mu} U_{mu}({p1}) {f2}({p2})"
else:
if mu in [ 0, 1, 2, 5 ]:
return -Qb(f2, p2, s1, c1) * G(mu, s1, s2) * U("gauge-dagger", p1, mu) * Qv(f1, p1, s2, c2) + f"(-){f2}bar({p2}) g{mu} U^dag_{mu}({p1}) {f1}({p1})"
else:
assert mu in [ 3, ]
return Qb(f2, p2, s1, c1) * G(mu, s1, s2) * U("gauge-dagger", p1, mu) * Qv(f1, p1, s2, c2) + f"{f2}bar({p2}) g{mu} U^dag_{mu}({p1}) {f1}({p1})"
###################
def mk_baryon(f1:str, f2:str, f3:str, p:str, spin:str, baryon_type:str="std", is_dagger=False):
"""
spin in [ "u", "d", ]
baryon_type in [ "std", "pos", ]
"""
assert spin in [ "u", "d", ]
assert baryon_type in [ "std", "pos", ]
s1 = new_spin_index()
s2 = new_spin_index()
s3 = new_spin_index()
c1 = new_color_index()
c2 = new_color_index()
c3 = new_color_index()
tag = f"{baryon_type}-{spin}"
if not is_dagger:
v = Bfield(tag, s1, s2, s3, c1, c2, c3)
v = v * Qb(f1, p, s1, c1) * Qb(f2, p, s2, c2) * Qb(f3, p, s3, c3)
v = v + f"Bb_{baryon_type}({f1},{f2},{f3},{spin})({p})"
return v
else:
v = Bfield(tag, s1, s2, s3, c1, c2, c3)
v = v * Qv(f3, p, s3, c3) * Qv(f2, p, s2, c2) * Qv(f1, p, s1, c1)
v = v + f"Bv_{baryon_type}({f1},{f2},{f3},{spin})({p})"
return v
def mk_proton(p:str, spin:str, baryon_type:str="std", is_dagger=False):
"""
spin in [ "u", "d", ]
baryon_type in [ "std", "pos", ]
"""
return mk_baryon("u", "u", "d", p, spin, baryon_type=baryon_type, is_dagger=is_dagger)
def mk_neutron(p:str, spin:str, baryon_type:str="std", is_dagger=False):
"""
spin in [ "u", "d", ]
baryon_type in [ "std", "pos", ]
"""
return mk_baryon("d", "d", "u", p, spin, baryon_type=baryon_type, is_dagger=is_dagger)
def mk_baryon3(f1:str, f2:str, f3:str, p:str, spin:str, baryon_type:str="std3", is_dagger=False):
"""
spin in [ "u3", "u1", "d1", "d3", ]
baryon_type in [ "std3", "pos3", ]
"""
assert spin in [ "u3", "u1", "d1", "d3", ]
assert baryon_type in [ "std3", "pos3", ]
s1 = new_spin_index()
s2 = new_spin_index()
s3 = new_spin_index()
c1 = new_color_index()
c2 = new_color_index()
c3 = new_color_index()
tag = f"{baryon_type}-{spin}"
if not is_dagger:
v = Bfield(tag, s1, s2, s3, c1, c2, c3)
v = v * Qb(f1, p, s1, c1) * Qb(f2, p, s2, c2) * Qb(f3, p, s3, c3)
v = v + f"Bb_{baryon_type}({f1},{f2},{f3},{spin})({p})"
return v
else:
v = Bfield(tag, s1, s2, s3, c1, c2, c3)
v = v * Qv(f3, p, s3, c3) * Qv(f2, p, s2, c2) * Qv(f1, p, s1, c1)
v = v + f"Bv_{baryon_type}({f1},{f2},{f3},{spin})({p})"
return v
def mk_omega(p:str, spin:str, baryon_type:str="std3", is_dagger=False):
"""
spin in [ "u3", "u1", "d1", "d3", ]
baryon_type in [ "std3", "pos3", ]
"""
return mk_baryon3("s", "s", "s", p, spin, baryon_type=baryon_type, is_dagger=is_dagger)
###################
def test():
print("test")
args = ["x", None]
for mu in range(11):
save_sc_indices()
expr1 = simplified( rsc_call(mk_Q1,*args)
- rsc_call(mk_Q2,*args)
- rsc_call(mk_Q3,*args)
+ rsc_call(mk_Q4,*args) )
expr2 = simplified( 3 * rsc_call(mk_Q1,*args)
- rsc_call(mk_Q3,*args)
- 2 * rsc_call(mk_Q9,*args) )
expr3 = simplified( rsc_call(mk_Q1,*args)
+ 2 * rsc_call(mk_Q2,*args)
- rsc_call(mk_Q3,*args)
- 2 * rsc_call(mk_Q10,*args))
jump_sc_indices()
expr1 = mk_pipi_i0("x1_1", "x1_2", True) * expr1 * mk_k_0("x2")
expr2 = mk_pipi_i0("x1_1", "x1_2", True) * expr2 * mk_k_0("x2")
expr3 = mk_pipi_i0("x1_1", "x1_2", True) * expr3 * mk_k_0("x2")
print(display_cexpr(contract_simplify_compile(expr1, expr2, expr3)))
# print(display_cexpr(contract_simplify_compile(
# mk_pipi_i0("x1_1", "x1_2", True) * mk_Q1("x") * mk_k_0("x2"),
# mk_pipi_i0("x1_1", "x1_2", True) * mk_Q2("x") * mk_k_0("x2"),
# mk_pipi_i0("x1_1", "x1_2", True) * mk_Q3("x") * mk_k_0("x2"),
# mk_pipi_i0("x1_1", "x1_2", True) * mk_Q4("x") * mk_k_0("x2"),
# mk_pipi_i0("x1_1", "x1_2", True) * mk_Q5("x") * mk_k_0("x2"),
# mk_pipi_i0("x1_1", "x1_2", True) * mk_Q6("x") * mk_k_0("x2"),
# mk_pipi_i0("x1_1", "x1_2", True) * mk_Q7("x") * mk_k_0("x2"),
# mk_pipi_i0("x1_1", "x1_2", True) * mk_Q8("x") * mk_k_0("x2"),
# mk_pipi_i0("x1_1", "x1_2", True) * mk_Q9("x") * mk_k_0("x2"),
# mk_pipi_i0("x1_1", "x1_2", True) * mk_Q10("x") * mk_k_0("x2"),
# )))
def test1():
def A(j_p, pi_p, is_dagger=False):
# I=21 Gparity +
return (mk_j10_mu(j_p, 0, is_dagger) * mk_pi_p(pi_p, is_dagger)
+ mk_j11_mu(j_p, 0, is_dagger) * mk_pi_0(pi_p, is_dagger))
def B(j_p, pi_p, is_dagger=False):
# I=20 Gparity +
return (2 * mk_j10_mu(j_p, 0, is_dagger) * mk_pi_0(pi_p, is_dagger)
+ mk_j1n1_mu(j_p, 0, is_dagger) * mk_pi_p(pi_p, is_dagger)
+ mk_j11_mu(j_p, 0, is_dagger) * mk_pi_m(pi_p, is_dagger))
def C(j_p, pi_p, is_dagger=False):
# I=11 Gparity +
return (mk_j10_mu(j_p, 0, is_dagger) * mk_pi_p(pi_p, is_dagger)
- mk_j11_mu(j_p, 0, is_dagger) * mk_pi_0(pi_p, is_dagger))
def D(j_p, pi_p, is_dagger=False):
# I=10 Gparity +
return (mk_j1n1_mu(j_p, 0, is_dagger) * mk_pi_p(pi_p, is_dagger)
- mk_j11_mu(j_p, 0, is_dagger) * mk_pi_m(pi_p, is_dagger))
def E(j_p, pi_p, is_dagger=False):
# I=0 Gparity +
return (-mk_j10_mu(j_p, 0, is_dagger) * mk_pi_0(pi_p, is_dagger)
+ mk_j1n1_mu(j_p, 0, is_dagger) * mk_pi_p(pi_p, is_dagger)
+ mk_j11_mu(j_p, 0, is_dagger) * mk_pi_m(pi_p, is_dagger))
def F(j_p, pi_p, is_dagger=False):
# I=11 Gparity -
return mk_j0_mu(j_p, 0, is_dagger) * mk_pi_p(pi_p, is_dagger)
def Gf(j_p, pi_p, is_dagger=False):
# I=10 Gparity -
return mk_j0_mu(j_p, 0, is_dagger) * mk_pi_0(pi_p, is_dagger)
def jpi_p(j_p, pi_p, is_dagger=False):
# charged
return mk_jl_mu(j_p, 0, is_dagger) * mk_pi_p(pi_p, is_dagger)
def jpi_0(j_p, pi_p, is_dagger=False):
# neutral
return mk_jl_mu(j_p, 0, is_dagger) * mk_pi_0(pi_p, is_dagger)
expr1 = sympy.simplify(1)*1/4 * (A("xj_2", "x_2", True) * A("xj_1", "x_1") + A("xj_2", "x_2") * A("xj_1", "x_1", True))
expr2 = sympy.simplify(1)*1/12 * (B("xj_2", "x_2", True) * B("xj_1", "x_1") + B("xj_2", "x_2") * B("xj_1", "x_1", True))
expr3 = sympy.simplify(1)*1/4 * (C("xj_2", "x_2", True) * C("xj_1", "x_1") + C("xj_2", "x_2") * C("xj_1", "x_1", True))
expr4 = sympy.simplify(1)*1/4 * (D("xj_2", "x_2", True) * D("xj_1", "x_1") + D("xj_2", "x_2") * D("xj_1", "x_1", True))
expr5 = sympy.simplify(1)*1/6 * (E("xj_2", "x_2", True) * E("xj_1", "x_1") + E("xj_2", "x_2") * E("xj_1", "x_1", True))
expr6 = sympy.simplify(1)*1/2 * (F("xj_2", "x_2", True) * F("xj_1", "x_1") + F("xj_2", "x_2") * F("xj_1", "x_1", True))
expr7 = sympy.simplify(1)*1/2 * (Gf("xj_2", "x_2", True) * Gf("xj_1", "x_1") + Gf("xj_2", "x_2") * Gf("xj_1", "x_1", True))
expr8 = sympy.simplify(1)*1/(4*sympy.sqrt(2)) * (
C("xj_2", "x_2", True) * F("xj_1", "x_1") + F("xj_2", "x_2", True) * C("xj_1", "x_1")
+ C("xj_2", "x_2") * F("xj_1", "x_1", True) + F("xj_2", "x_2") * C("xj_1", "x_1", True))
expr9 = sympy.simplify(1)*1/(4*sympy.sqrt(2)) * (
D("xj_2", "x_2", True) * Gf("xj_1", "x_1") + Gf("xj_2", "x_2", True) * D("xj_1", "x_1")
+ D("xj_2", "x_2") * Gf("xj_1", "x_1", True) + Gf("xj_2", "x_2") * D("xj_1", "x_1", True))
expr_p = -sympy.simplify(1)*1/2*(
jpi_p("xj_2", "x_2", True) * jpi_p("xj_1", "x_1")
+ jpi_p("xj_2", "x_2") * jpi_p("xj_1", "x_1", True))
expr_0 = -sympy.simplify(1)*1/2*(
jpi_0("xj_2", "x_2", True) * jpi_0("xj_1", "x_1")
+ jpi_0("xj_2", "x_2") * jpi_0("xj_1", "x_1", True))
exprs = [expr1, expr1 - expr2, expr3, expr3 - expr4, expr5, expr6, expr6 - expr7, expr8, expr8 - expr9,]
diagram_type_dict = dict()
diagram_type_dict[((('x_1', 'xj_1'), 1), (('x_2', 'xj_2'), 1), (('xj_1', 'x_1'), 1), (('xj_2', 'x_2'), 1))] = "Type1"
diagram_type_dict[((('x_1', 'xj_1'), 1), (('x_2', 'xj_2'), 1), (('xj_1', 'x_2'), 1), (('xj_2', 'x_1'), 1))] = "Type2"
diagram_type_dict[((('x_1', 'x_2'), 1), (('x_2', 'xj_1'), 1), (('xj_1', 'xj_2'), 1), (('xj_2', 'x_1'), 1))] = "Type3"
diagram_type_dict[((('x_1', 'x_2'), 1), (('x_2', 'x_1'), 1), (('xj_1', 'xj_2'), 1), (('xj_2', 'xj_1'), 1))] = "Type4"
print(display_cexpr(contract_simplify_compile(*exprs, diagram_type_dict=diagram_type_dict)))
expr_i2_gm = expr1
expr_i1_gm = expr3
expr_i0_gm = expr5
expr_i1_gp = expr6
exprs1 = [
# expr_p + sympy.simplify(1)*1/18*(sympy.simplify(1)*9/2*expr1 + sympy.simplify(1)*9/2*expr3 + expr6 + 3*sympy.sqrt(2)*expr8),
expr_p + sympy.simplify(1)*1/18*(sympy.simplify(1)*9/2*expr_i2_gm + sympy.simplify(1)*9/2*expr_i1_gm + expr_i1_gp),
expr_0 + sympy.simplify(1)*1/18*(6*expr_i2_gm + 3*expr_i0_gm + expr_i1_gp),
# (expr_p - expr_0),
]
print(display_cexpr(contract_simplify_compile(*exprs1, diagram_type_dict=diagram_type_dict)))
etype1n = Term([Tr([G(0), S('l','xj_1','x_1'), G(5), S('l','x_1','xj_1')],'sc'), Tr([G(0), S('l','xj_2','x_2'), G(5), S('l','x_2','xj_2')],'sc')],[],1)
etype1r = Term([Tr([G(0), S('l','xj_1','x_2'), G(5), S('l','x_2','xj_1')],'sc'), Tr([G(0), S('l','xj_2','x_1'), G(5), S('l','x_1','xj_2')],'sc')],[],1)
etype2 = sympy.simplify(1)/2 * (
Term([Tr([G(0), S('l','xj_1','x_1'), G(5), S('l','x_1','xj_2'), G(0), S('l','xj_2','x_2'), G(5), S('l','x_2','xj_1')],'sc')],[],1)
+ Term([Tr([G(0), S('l','xj_1','x_2'), G(5), S('l','x_2','xj_2'), G(0), S('l','xj_2','x_1'), G(5), S('l','x_1','xj_1')],'sc')],[],1))
etype3n = sympy.simplify(1)/2 * (
Term([Tr([G(0), S('l','xj_1','x_1'), G(5), S('l','x_1','x_2'), G(5), S('l','x_2','xj_2'), G(0), S('l','xj_2','xj_1')],'sc')],[],1)
+ Term([Tr([G(0), S('l','xj_1','xj_2'), G(0), S('l','xj_2','x_2'), G(5), S('l','x_2','x_1'), G(5), S('l','x_1','xj_1')],'sc')],[],1))
etype3r = sympy.simplify(1)/2 * (
Term([Tr([G(0), S('l','xj_1','x_2'), G(5), S('l','x_2','x_1'), G(5), S('l','x_1','xj_2'), G(0), S('l','xj_2','xj_1')],'sc')],[],1)
+ Term([Tr([G(0), S('l','xj_1','xj_2'), G(0), S('l','xj_2','x_1'), G(5), S('l','x_1','x_2'), G(5), S('l','x_2','xj_1')],'sc')],[],1))
etype4 = Term([Tr([G(0), S('l','xj_1','xj_2'), G(0), S('l','xj_2','xj_1')],'sc'), Tr([G(5), S('l','x_1','x_2'), G(5), S('l','x_2','x_1')],'sc')],[],1)
exprs2 = [
expr_i2_gm - (etype1r - 2*etype3r + etype4), # I=2 Gparity +
expr_i1_gm - (- etype1r + 2*etype2 - 2*etype3n + etype4), # I=1 Gparity +
expr_i0_gm - (3*etype1n + etype1r - 3*etype2 - 3*etype3n + etype3r + etype4), # I=0 Gparity +
expr_i1_gp - (- etype2 - etype3n - etype3r + etype4), # I=1 Gparity -
]
print(display_cexpr(contract_simplify_compile(*exprs2, diagram_type_dict=diagram_type_dict)))
def test_kk():
expr1 = mk_kk_i0("x2_1", "x2_2", True) * mk_kk_i0("x1_1", "x1_2")
expr2 = mk_kk_i0("x2_1", "x2_2", True) * mk_pipi_i0("x1_1", "x1_2")
expr3 = mk_kk_i0("x2_1", "x2_2", True) * mk_sigma("x1", "x1")
expr4 = mk_k0k0bar("x2_1", "x2_2", True) * mk_k0k0bar("x1_1", "x1_2")
expr5 = mk_k0k0bar("x2_1", "x2_2", True) * mk_pipi_i0("x1_1", "x1_2")
expr6 = mk_k0k0bar("x2_1", "x2_2", True) * mk_sigma("x1", "x1")
all_exprs = [
[ expr1, expr4, ],
[ expr2, expr5, ],
[ expr3, expr6, ],
]
names = [ "kk kk", "kk pipi", "kk sigma", ]
for name, exprs in zip(names, all_exprs):
print(f"\n-- {name} --")
cexpr = contract_simplify_compile(*exprs)
print(display_cexpr(cexpr))
cexpr.collect_op()
print(display_cexpr(cexpr))
print(f"-- {name} --\n")
def test_kk_sym():
expr1 = mk_kk_i0("x2_1", "x2_2", True, is_sym=True) * mk_kk_i0("x1_1", "x1_2", is_sym=True)
expr2 = mk_kk_i0("x2_1", "x2_2", True, is_sym=True) * mk_pipi_i0("x1_1", "x1_2")
expr3 = mk_kk_i0("x2_1", "x2_2", True, is_sym=True) * mk_sigma("x1", "x1")
expr4 = mk_k0k0bar("x2_1", "x2_2", True, is_sym=True) * mk_k0k0bar("x1_1", "x1_2", is_sym=True)
expr5 = mk_k0k0bar("x2_1", "x2_2", True, is_sym=True) * mk_pipi_i0("x1_1", "x1_2")
expr6 = mk_k0k0bar("x2_1", "x2_2", True, is_sym=True) * mk_sigma("x1", "x1")
all_exprs = [
[ expr1, expr4, ],
[ expr2, expr5, ],
[ expr3, expr6, ],
]
names = [ "kk kk", "kk pipi", "kk sigma", ]
for name, exprs in zip(names, all_exprs):
print(f"\n-- {name} --")
cexpr = contract_simplify_compile(*exprs)
print(display_cexpr(cexpr))
cexpr.collect_op()
print(display_cexpr(cexpr))
print(f"-- {name} --\n")
def test_kpipi():
s1 = new_spin_index()
s2 = new_spin_index()
c = new_color_index()
expr1 = Qb("s", "x", s1, c) * G("G1", s1, s2) * Qv("d", "x", s2, c) + "sb_G1_d"
s1 = new_spin_index()
s2 = new_spin_index()
c = new_color_index()
expr2 = Qb("u", "x", s1, c) * G("G2", s1, s2) * Qv("u", "x", s2, c) + "ub_G2_u"
s1 = new_spin_index()
s2 = new_spin_index()
c = new_color_index()
expr3 = Qb("d", "y", s1, c) * G("5", s1, s2) * Qv("s", "y", s2, c) + "db_g5_s"
print(expr1)
print(expr2)
print(expr3)
print(display_cexpr(contract_simplify_compile(expr1 * expr2 * expr3, is_isospin_symmetric_limit=False)))
def test_prop():
s1 = new_spin_index()
s2 = new_spin_index()
c1 = new_color_index()
c2 = new_color_index()
expr = Qv("q", "x", s1, c1) * Qb("q", "y", s2, c2) + "q(x) qb(y)"
print(expr)
print(display_cexpr(contract_simplify_compile(expr, is_isospin_symmetric_limit=False)))
def test_pipi():
expr1 = mk_pi_0("x2_1", True) * mk_pi_0("x2_2", True) * mk_pi_0("x1_1") * mk_pi_0("x1_2")
expr2 = mk_pi_p("x2_1", True) * mk_pi_m("x2_2", True) * mk_pi_p("x1_1") * mk_pi_m("x1_2")
expr2p = mk_pi_m("x2_1", True) * mk_pi_p("x2_2", True) * mk_pi_p("x1_1") * mk_pi_m("x1_2")
expr = (expr2 + expr2p) - expr1
print(expr)
print(display_cexpr(contract_simplify_compile(expr, is_isospin_symmetric_limit=True)))
def test_meson_corr():
diagram_type_dict = dict()
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 't_1'), 1))] = 'Type1'
exprs = [
mk_pi_0("t_1", True) * mk_pi_0("t_2"),
mk_k_0("t_1", True) * mk_k_0("t_2"),
]
cexpr = contract_simplify_compile(*exprs, is_isospin_symmetric_limit=True, diagram_type_dict=diagram_type_dict)
print()
print("meson_corr")
print(display_cexpr(cexpr))
def test_meson_f_corr():
diagram_type_dict = dict()
diagram_type_dict[((('t_1', 'x_2'), 1), (('x_2', 't_1'), 1))] = 'Type1'
exprs = [
mk_j5pi_mu("x_2", 3) * mk_pi_p("t_1") + "(a_pi * pi)",
mk_j5k_mu("x_2", 3) * mk_k_p("t_1") + "(a_k * k )",
]
cexpr = contract_simplify_compile(*exprs, is_isospin_symmetric_limit=True, diagram_type_dict=diagram_type_dict)
print()
print("meson_f_corr")
print(display_cexpr(cexpr))
def test_meson_m():
diagram_type_dict = dict()
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 'x_1'), 1), (('x_1', 't_1'), 1))] = 'Type1'
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 't_1'), 1), (('x_1', 'x_1'), 1))] = None
exprs = [
mk_pi_0("t_1", True) * mk_m("u", "x_1") * mk_pi_0("t_2"),
mk_pi_0("t_1", True) * mk_m("d", "x_1") * mk_pi_0("t_2"),
mk_pi_p("t_1", True) * mk_m("u", "x_1") * mk_pi_p("t_2"),
mk_pi_p("t_1", True) * mk_m("d", "x_1") * mk_pi_p("t_2"),
mk_k_0("t_1", True) * mk_m("d", "x_1") * mk_k_0("t_2"),
mk_k_0("t_1", True) * mk_m("s", "x_1") * mk_k_0("t_2"),
mk_k_p("t_1", True) * mk_m("u", "x_1") * mk_k_p("t_2"),
mk_k_p("t_1", True) * mk_m("s", "x_1") * mk_k_p("t_2"),
]
cexpr = contract_simplify_compile(*exprs, is_isospin_symmetric_limit=True, diagram_type_dict=diagram_type_dict)
print()
print("meson_m")
print(display_cexpr(cexpr))
def test_meson_jt():
diagram_type_dict = dict()
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 'x_1'), 1), (('x_1', 't_1'), 1))] = 'Type1'
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 't_1'), 1), (('x_1', 'x_1'), 1))] = None
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 'x_2'), 1), (('x_2', 't_1'), 1))] = 'Type2'
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 't_1'), 1), (('x_2', 'x_2'), 1))] = None
exprs = [
mk_pi_p("t_1", True) * mk_vec_mu("u", "u", "x_1", 3) * mk_pi_p("t_2"),
mk_k_p("t_1", True) * mk_vec_mu("u", "u", "x_1", 3) * mk_k_p("t_2"),
mk_k_m("t_1", True) * mk_vec_mu("s", "s", "x_1", 3) * mk_k_m("t_2"),
mk_pi_p("t_1p", True) * mk_vec_mu("u", "u", "x_1", 3) * mk_pi_p("t_2p"),
mk_k_p("t_1p", True) * mk_vec_mu("u", "u", "x_1", 3) * mk_k_p("t_2p"),
mk_k_m("t_1p", True) * mk_vec_mu("s", "s", "x_1", 3) * mk_k_m("t_2p"),
]
cexpr = contract_simplify_compile(*exprs, is_isospin_symmetric_limit=True, diagram_type_dict=diagram_type_dict)
print()
print("meson_jt")
print(display_cexpr(cexpr))
def test_meson_jj():
diagram_type_dict = dict()
diagram_type_dict[((('x_1', 'x_2'), 1), (('x_2', 'x_1'), 1))] = 'Type0'
diagram_type_dict[((('x_1', 'x_1'), 1), (('x_2', 'x_2'), 1))] = None
diagram_type_dict[((('t_1', 'x_1'), 1), (('t_2', 'x_2'), 1), (('x_1', 't_1'), 1), (('x_2', 't_2'), 1))] = 'Type1'
diagram_type_dict[((('t_1', 'x_1'), 1), (('t_2', 'x_2'), 1), (('x_1', 't_2'), 1), (('x_2', 't_1'), 1))] = 'Type2'
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 'x_1'), 1), (('x_1', 'x_2'), 1), (('x_2', 't_1'), 1))] = 'Type3'
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 't_1'), 1), (('x_1', 'x_2'), 1), (('x_2', 'x_1'), 1))] = 'Type4'
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 'x_1'), 1), (('x_1', 't_1'), 1), (('x_2', 'x_2'), 1))] = None
diagram_type_dict[((('t_1', 't_2'), 1), (('t_2', 't_1'), 1), (('x_1', 'x_1'), 1), (('x_2', 'x_2'), 1))] = None
exprs = [
mk_pi_0("t_1", True) * mk_j_mu("x_1", "mu") * mk_j_mu("x_2", "nu") * mk_pi_0("t_2"),
mk_pi_p("t_1", True) * mk_j_mu("x_1", "mu") * mk_j_mu("x_2", "nu") * mk_pi_p("t_2"),
mk_k_0("t_1", True) * mk_j_mu("x_1", "mu") * mk_j_mu("x_2", "nu") * mk_k_0("t_2"),
mk_k_p("t_1", True) * mk_j_mu("x_1", "mu") * mk_j_mu("x_2", "nu") * mk_k_p("t_2"),
mk_j_mu("x_1", "mu") * mk_j_mu("x_2", "nu"),
]
cexpr = contract_simplify_compile(*exprs, is_isospin_symmetric_limit=True, diagram_type_dict=diagram_type_dict)
print()
print("meson_jj")
print(display_cexpr(cexpr))
def test_meson_fj():
diagram_type_dict = dict()
diagram_type_dict[((('t', 'x_1'), 1), (('x_1', 'x_2'), 1), (('x_2', 't'), 1))] = 'Type1'
diagram_type_dict[((('t', 'x_1'), 1), (('x_1', 't'), 1), (('x_2', 'x_2'), 1))] = None
exprs = [
mk_j5pi_mu("x_1", "mu") * mk_j_mu("x_2", "nu") * mk_pi_p("t"),
mk_j5k_mu("x_1", "mu") * mk_j_mu("x_2", "nu") * mk_k_p("t"),
mk_jpi_mu("x_1", "mu") * mk_j_mu("x_2", "nu") * mk_pi_p("t"),
mk_jk_mu("x_1", "mu") * mk_j_mu("x_2", "nu") * mk_k_p("t"),
]
cexpr = contract_simplify_compile(*exprs, is_isospin_symmetric_limit=True, diagram_type_dict=diagram_type_dict)
print()
print("meson_fj")
print(display_cexpr(cexpr))
def test_meson_jj_all():
print("< pi+(x_2)^dag j_mu(xj_1) j_nu(xj_2) pi+(x_1) >")
print("< pi-(x_2)^dag j_mu(xj_1) j_nu(xj_2) pi-(x_1) >")
print("< pi0(x_2)^dag j_mu(xj_1) j_nu(xj_2) pi0(x_1) >")
pi_p = mk_pi_p("x_2", True) * mk_jl_mu("xj_1", "mu") * mk_jl_mu("xj_2", "nu") * mk_pi_p("x_1") + "< pi+(x_2)^dag j_mu(xj_1) j_nu(xj_2) pi+(x_1) >"
pi_m = mk_pi_m("x_2", True) * mk_jl_mu("xj_1", "mu") * mk_jl_mu("xj_2", "nu") * mk_pi_m("x_1") + "< pi-(x_2)^dag j_mu(xj_1) j_nu(xj_2) pi-(x_1) >"
pi_0 = mk_pi_0("x_1", True) * mk_jl_mu("xj_1", "mu") * mk_jl_mu("xj_2", "nu") * mk_pi_0("x_2") + "< pi0(x_2)^dag j_mu(xj_1) j_nu(xj_2) pi0(x_1) >"
exprs = [
pi_p,
pi_m,
mk_sym(1)/2 * (pi_p + pi_m),
pi_0,
]
print(display_cexpr(contract_simplify_compile(*exprs)))
if __name__ == "__main__":
test_meson_jj_all()
exit()
# test()
# test1()
# test_pipi()
# test_prop()
# test_kpipi()
# test_kk()
# test_kk_sym()
test_meson_corr()
test_meson_f_corr()
test_meson_m()
test_meson_jt()
test_meson_jj()
test_meson_fj()
exit()
#
print("pi+(x1):\n", mk_pi_p("x1"))
print("pi+(x2)^dag pi+(x1):\n", mk_pi_p("x2", True) * mk_pi_p("x1"))
print("< pi+(x2)^dag pi+(x1) >:")
expr = mk_pi_p("x2", True) * mk_pi_p("x1")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("pi0(x1):\n", mk_pi_0("x1"))
print("pi0(x2)^dag pi0(x1):\n", mk_pi_0("x2", True) * mk_pi_0("x1"))
print("< pi0(x2)^dag pi0(x1) >:")
expr = mk_pi_0("x2", True) * mk_pi_0("x1")
print(display_cexpr(contract_simplify_compile(expr, is_isospin_symmetric_limit=False)))
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< pi0(x2)^dag pi0(x1) > - < pi+(x2)^dag pi+(x1) >: ",
simplified(contract_expr(mk_pi_0("x2", True) * mk_pi_0("x1") - mk_pi_p("x2", True) * mk_pi_p("x1")), is_isospin_symmetric_limit=True))
print()
print("< pipiI22(x2_1,x2_2)^dag pipiI22(x1_1,x1_2) >:")
expr = mk_pipi_i22("x2_1", "x2_2", True) * mk_pipi_i22("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print("< pipiI21(x2_1,x2_2)^dag pipiI21(x1_1,x1_2) - pipiI22(x2_1,x2_2)^dag pipiI22(x1_1,x1_2) >:")
expr = mk_pipi_i21("x2_1", "x2_2", True) * mk_pipi_i21("x1_1", "x1_2") - mk_pipi_i22("x2_1", "x2_2", True) * mk_pipi_i22("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print("< pipiI20(x2_1,x2_2)^dag pipiI20(x1_1,x1_2) - pipiI22(x2_1,x2_2)^dag pipiI22(x1_1,x1_2) >:")
expr = mk_pipi_i20("x2_1", "x2_2", True) * mk_pipi_i20("x1_1", "x1_2") - mk_pipi_i22("x2_1", "x2_2", True) * mk_pipi_i22("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< pipiI11(x2_1,x2_2)^dag pipiI11(x1_1,x1_2) >:")
expr = mk_pipi_i11("x2_1", "x2_2", True) * mk_pipi_i11("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print("< pipiI10(x2_1,x2_2)^dag pipiI10(x1_1,x1_2) - pipiI11(x2_1,x2_2)^dag pipiI11(x1_1,x1_2) >:")
expr = mk_pipi_i10("x2_1", "x2_2", True) * mk_pipi_i10("x1_1", "x1_2") - mk_pipi_i11("x2_1", "x2_2", True) * mk_pipi_i11("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< pipiI0(x1_1,x1_2) >:")
expr = mk_pipi_i0("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print("< pipiI0(x2_1,x2_2)^dag pipiI0(x1_1,x1_2) >:")
expr = mk_pipi_i0("x2_1", "x2_2", True) * mk_pipi_i0("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< sigma(x1) >:")
expr = mk_sigma("x1")
print(display_cexpr(contract_simplify_compile(expr)))
print("< pipiI0(x2_1,x2_2)^dag sigma(x1) >:")
expr = mk_pipi_i0("x2_1", "x2_2", True) * mk_sigma("x1")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< K+(x2)^dag K+(x1)>:")
expr = mk_k_p("x2", True) * mk_k_p("x1")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< pi0(x2)^dag j_mu(xj_1) j_nu(xj_2) pi0(x1) >:")
expr = mk_pi_0("x1", True) * mk_j_mu("xj_1", "mu") * mk_j_mu("xj_2", "nu") * mk_pi_0("x2")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< pi+(x2)^dag j_mu(xj_1) j_nu(xj_2) pi+(x1) / 2 + pi-(x2)^dag j_mu(xj_1) j_nu(xj_2) pi-(x1) / 2 >:")
expr = (
sympy.simplify(1)/2 * mk_pi_p("x2", True) * mk_j_mu("xj_1", "mu") * mk_j_mu("xj_2", "nu") * mk_pi_p("x1")
+ sympy.simplify(1)/2 * mk_pi_m("x2", True) * mk_j_mu("xj_1", "mu") * mk_j_mu("xj_2", "nu") * mk_pi_m("x1")
)
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< pi+(x2)^dag j_mu(xj_1) j_nu(xj_2) pi+(x1) / 2 + pi-(x2)^dag j_mu(xj_1) j_nu(xj_2) pi-(x1) / 2 - pi0(x2)^dag j_mu(xj_1) j_nu(xj_2) pi0(x1) >:")
expr = (
sympy.simplify(1)/2 * mk_pi_p("x2", True) * mk_j_mu("xj_1", "mu") * mk_j_mu("xj_2", "nu") * mk_pi_p("x1")
+ sympy.simplify(1)/2 * mk_pi_m("x2", True) * mk_j_mu("xj_1", "mu") * mk_j_mu("xj_2", "nu") * mk_pi_m("x1")
- mk_pi_0("x1", True) * mk_j_mu("xj_1", "mu") * mk_j_mu("xj_2", "nu") * mk_pi_0("x2")
)
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< pi+(x2)^dag dm(xj_1) dm(xj_2) pi+(x1) / 2 + pi-(x2)^dag dm(xj_1) dm(xj_2) pi-(x1) / 2 - pi0(x2)^dag dm(xj_1) dm(xj_2) pi0(x1) >:")
expr_dm1 = mk_scalar("d", "d", "xj_1") - mk_scalar("u", "u", "xj_1")
expr_dm2 = mk_scalar("d", "d", "xj_2") - mk_scalar("u", "u", "xj_2")
expr_dm = expr_dm1 * expr_dm2
expr = (
sympy.simplify(1)/2 * mk_pi_p("x2", True) * expr_dm * mk_pi_p("x1")
+ sympy.simplify(1)/2 * mk_pi_m("x2", True) * expr_dm * mk_pi_m("x1")
- mk_pi_0("x1", True) * expr_dm * mk_pi_0("x2")
)
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< pi+(x_2)^dag j_mu(xj_1) j_nu(xj_2) pi+(x_1) + pi-(x_2)^dag j_mu(xj_1) j_nu(xj_2) pi-(x_1) + pi0(x_2)^dag j_mu(xj_1) j_nu(xj_2) pi0(x_1) >:")
expr = (
sympy.simplify(1) * mk_pi_p("x_2", True) * mk_jl_mu("xj_1", "mu") * mk_jl_mu("xj_2", "nu") * mk_pi_p("x_1")
+ sympy.simplify(1) * mk_pi_m("x_2", True) * mk_jl_mu("xj_1", "mu") * mk_jl_mu("xj_2", "nu") * mk_pi_m("x_1")
+ mk_pi_0("x_1", True) * mk_jl_mu("xj_1", "mu") * mk_jl_mu("xj_2", "nu") * mk_pi_0("x_2")
)
diagram_type_dict = dict()
diagram_type_dict[((('x_1', 'xj_1'), 1), (('x_2', 'xj_2'), 1), (('xj_1', 'x_1'), 1), (('xj_2', 'x_2'), 1))] = "Type1"
diagram_type_dict[((('x_1', 'xj_1'), 1), (('x_2', 'xj_2'), 1), (('xj_1', 'x_2'), 1), (('xj_2', 'x_1'), 1))] = "Type2"
diagram_type_dict[((('x_1', 'x_2'), 1), (('x_2', 'xj_1'), 1), (('xj_1', 'xj_2'), 1), (('xj_2', 'x_1'), 1))] = "Type3"
diagram_type_dict[((('x_1', 'x_2'), 1), (('x_2', 'x_1'), 1), (('xj_1', 'xj_2'), 1), (('xj_2', 'xj_1'), 1))] = "Type4"
print(display_cexpr(contract_simplify_compile(expr, diagram_type_dict=diagram_type_dict)))
#
print()
print("< KpiI3/2_Iz1/2(x2_1,x2_2)^dag KpiI1/2_Iz1/2(x1_1,x1_2) >:")
expr = mk_kpi_0_i3halves("x2_1", "x2_2", True) * mk_kpi_0_i1half("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< KpiI3/2_Iz3/2(x2_1,x2_2)^dag KpiI3/2_Iz3/2(x1_1,x1_2) > - KpiI3/2_Iz1/2(x2_1,x2_2)^dag KpiI3/2_Iz1/2(x1_1,x1_2) >:")
expr = mk_kpi_p2_i3halves("x2_1", "x2_2", True) * mk_kpi_p2_i3halves("x1_1", "x1_2") - mk_kpi_p1_i3halves("x2_1", "x2_2", True) * mk_kpi_p1_i3halves("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< KpiI3/2_Iz3/2(x2_1,x2_2)^dag KpiI3/2_Iz3/2(x1_1,x1_2) > - KpiI3/2_Iz-1/2(x2_1,x2_2)^dag KpiI3/2_Iz-1/2(x1_1,x1_2) >:")
expr = mk_kpi_p2_i3halves("x2_1", "x2_2", True) * mk_kpi_p2_i3halves("x1_1", "x1_2") - mk_kpi_0_i3halves("x2_1", "x2_2", True) * mk_kpi_0_i3halves("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< KpiI3/2_Iz3/2(x2_1,x2_2)^dag KpiI3/2_Iz3/2(x1_1,x1_2) > - KpiI3/2_Iz-3/2(x2_1,x2_2)^dag KpiI3/2_Iz-3/2(x1_1,x1_2) >:")
expr = mk_kpi_p2_i3halves("x2_1", "x2_2", True) * mk_kpi_p2_i3halves("x1_1", "x1_2") - mk_kpi_m_i3halves("x2_1", "x2_2", True) * mk_kpi_m_i3halves("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print()
print("< KpiI1/2_Iz1/2(x2_1,x2_2)^dag KpiI1/2_Iz1/2(x1_1,x1_2) > - < KpiI1/2_Iz-1/2(x2_1,x2_2)^dag KpiI1/2_Iz-1/2(x1_1,x1_2) >:")
expr = mk_kpi_0_i1half("x2_1", "x2_2", True) * mk_kpi_0_i1half("x1_1", "x1_2") - mk_kpi_p_i1half("x2_1", "x2_2", True) * mk_kpi_p_i1half("x1_1", "x1_2")
print(display_cexpr(contract_simplify_compile(expr)))
print()